Phase 1 Study to Assess Pharmacokinetics (PK), QT/QTc Effect, and Safety of Amrubicin in Patients With Advanced Solid Tumors

Nianhang Chen¹, Sant P. Chawla², Elena G. Chiorean³, William L. Read⁴, Mayer Gorbaty⁵, Alain C. Mita⁶, Lotus Yung¹, Richard McNally¹, Markus F. Renschler¹, Sunil Sharma⁷ ¹Celgene Corporation, Summit, NJ; ²Sarcoma Oncology Center, Santa Monica, CA; ³Indiana University of Texas Health Science Center, San Antonio, TX; ⁷Huntsman Cancer Center, Indianapolis, IN; ⁴Rebecca and John Moore Cancer Center, Santa Monica, CA; ⁵Sinai Hospital of Baltimore, MD; ⁶University of Texas Health Science Center, San Antonio, TX; ⁷Huntsman Cancer Institute, Salt Lake City, UT; USA ¹Celgene Corporation, Summit, NJ; ²Sarcoma Oncology Center, Santa Monica, CA; ⁵Sinai Hospital of Baltimore, MD; ⁶University of Texas Health Science Center, Santa Monica, CA; ⁵Sinai Hospital of Baltimore, MD; ⁶University of Texas Health Science Center, Santa Monica, CA; ⁵Sinai Hospital of Baltimore, MD; ⁶University of Texas Health Science Center, Santa Monica, CA; ⁵Sinai Hospital of Baltimore, MD; ⁶University of Texas Health Science Center, Santa Monica, CA; ⁵Sinai Hospital of Baltimore, MD; ⁶University of Texas Health Science Center, Santa Monica, CA; ⁵Sinai Hospital of Baltimore, MD; ⁶University of Texas Health Science Center, Santa Monica, CA; ⁵Sinai Hospital of Baltimore, MD; ⁶University of Texas Health Science Center, Santa Monica, CA; ⁵Sinai Hospital of Baltimore, MD; ⁶University of Texas Health Science Center, Santa Monica, CA; ⁵Sinai Hospital of Baltimore, MD; ⁶University of Texas Health Science Center, Santa Monica, CA; ⁵Sinai Hospital of Baltimore, MD; ⁶University of Texas Health Science Center, Santa Monica, CA; ⁵Sinai Hospital of Baltimore, MD; ⁶University of Texas Health Science Center, Santa Monica, CA; ⁵Sinai Hospital of Baltimore, MD; ⁶University of Texas Health Science Center, Santa Monica, Santa Mo

BACKGROUND

- Amrubicin (AMR) is a third-generation synthetic anthracycline analogue and a potent topoisomerase II inhibitor¹
- The drug has demonstrated substantial clinical activity in the treatment of lung cancer.² It is currently approved in Japan for the treatment of both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC)
- In Japanese patients with solid tumors, the pharmacokinetics (PK) of AMR is linear over 10 to 130 mg/m².⁴ Amrubicin was rapidly converted to an active metabolite, amrubicinol (AMROL),⁵ which is readily distributed into red blood cells (RBCs) and slowly disappears from circulation. To date. the PK of AMR and AMROL has not been characterized in non-Japanese populations
- Although anthracyclines are known to cause cardiotoxicity, their ability to induce clinically significant delay of cardiac repolarization (measured as QTc prolongation) has not been established as a class effect. Unlike other anthracyclines, classical anthracycline-like cardiotoxicity has not been observed for AMR in both nonclinical and clinical studies.^{2,3,6,7} However. the effect of AMR on cardiac repolarization has not been adequately evaluated

OBJECTIVES

Primary objectives

- To characterize the PK of AMR and its active metabolite AMROL
- To evaluate their potential effects on the total cardiac output (QT)/QTc interval - Largest mean change in QTc ($\Delta\Delta$ QTc) calculated using Fridericia's equation ($\Delta\Delta$ QTcF) as the primary endpoint
- To determine the safety and tolerability of AMR

Secondary objective

• To explore the relationship between the PK of AMR and AMROL and the potential changes in QT/QTc

METHODS

Study design and study procedures

- Phase 1, open-label, single-arm, multicenter trial
- Off-drug, baseline controlled
- Continuous 12-lead Holter ECG for 11 hrs on off-drug visit, day 1, and day 3; triplicate extraction of ECG at PK sampling time points
- Triplicate 12-lead safety ECG on days 1–9
- Other routine safety monitoring during study and at the end of study

Eligibility

- Histologically or cytologically proven advanced solid tumors
- Men and women aged 18–65 years
- Eastern Cooperative Oncology Group (ECOG) Performance Status score 0 or 1
- Adequate hematologic, hepatic, renal, and cardiac function
- QTcF \leq 450 ms (men) or \leq 470 ms (women) within 3 months of screening

Treatment

- AMR hydrochloride: 5-minute intravenous infusions of 40 mg/m² on days 1–3 of a single 21-day cycle
- Prophylactic antibiotics: started on day 9 for up to 13 days
- White-blood-cell growth factor (pegfilgrastim): started on day 9 and continued as clinically indicated

Outcome measurements

- PK profile for AMR and AMROL in whole blood, plasma, RBCs, and urine Empirical PK parameters
- Time-matched, baseline-adjusted, and off-drug $\Delta\Delta QTc$
- Frequency of abnormal QTc intervals
- Relationship between AMR or AMROL concentrations and QTcF changes
- Adverse events (AEs), clinical laboratory tests, vital signs, 12-lead electrocardiogram (ECG) assessment

Presented at the 47th Annual Meeting of the American Society of Clinical Oncology (ASCO), Chicago, IL, USA; June 3–7, 2011.

RESULTS

Baseline patient characteristics

- 24 patients with a median age of 58 years were enrolled (Table 1) 71% of patients had an ECOG Performance Status score of 1
- 33% had been diagnosed with lung cancer
- All patients received prior radiation therapy and chemotherapy, and 88% had undergone surgery

able 1. Baseline characteristics (N = 24)

Median age, years (range)
Median body surface area, m ² (range)
Median weight, kg (range)
Men, n (%)
Race, n (%)
Caucasian
African American
Asian
Other
ECOG Performance Status score, n (%)
0
1
Previous cardiac-related complications
Lung tumors, n (%)
Previous anticancer therapies, n (%)
Surgery
Radiation
Chemotherapy

Pharmacokinetics

- Rapid elimination: initial 80% reduction within 10 minutes (Figure 1) – Terminal elimination half-life ($t_{1/2}$, z), of ~ 4 hours in circulation (Table 2)
- · Almost identical PK profiles between plasma and whole blood
- Distributed into RBCs 1.4 folds greater than plasma on day 3 (see AUC₂₄ in Figure 2)
- Urinary excretion was < 1.5% of the dose (Figure 3)
- AMRO
- Formed rapidly in whole blood with a median time to reach the observed maximum concentration (C_{max}) (t_{max}) of 2–4 hours (Table 2)
- Long half-life ($t_{1/2}$, $z_{1/2}$ = 52.8 hours) with an accumulation ratio of 1.7 for whole blood exposure after 3 doses (Table 2)
- Whole blood area under the concentration-time curve over 24 hours after dosing (AUC₂₄) equivalent to 67% of AMR after 3 doses (Table 2)
- Distributed into RBCs 5 folds greater than plasma on day 3 (see AUC₂₄ in Figure 2) - Daily urinary excretion was < 8% of the AMR dose (Figure 3), but incomplete

Table 2. PK parameters of AMR and AMROL in whole blood

	AMR (N = 24)		$AMROL^{*}$ (N = 24)	
	Day 1	Day 3	Day 1	Day 3
Mean t _{max} , h (range)	0.067	0.067	4.00	2.00
	(0.067–0.25)	(0.014–0.433)	(0.067–6.083)	(0.5–6.017)
Mean C _{max} , ng/mL (CV%)	3,254 (56.9)	3,608 (53.1)	57 (25.0)	102.9 (37.4)
Mean AUC ₂₄ , h•ng/mL (CV%)	2,253 (25.3)	2,348 (21.5)	905 (25.2)	1,525 (26.5)
Mean t _½ ,z, h (CV%)	3.76 (18.7)	4.48 (23.5)	17.6 (31.0)	52.8 (28.6)
Mean CL, mL/min (CV%)	573 (37.1)	534 (33.2)	NA	NA
Mean V _{ss} , L (CV%)	125 (36.7)	125 (27.6)	NA	NA
Mean Rac(C _{max}) (CV%)	NA	1.41 (76.4)	NA	1.79 (21.4)
Mean Rac(AUC ₂₄) (CV%)	NA	1.06 (15.6)	NA	1.70 (14.7)
Mean MR-AUC ₂₄ (CV%)	NA	NA	0.42 (33.9)	0.67 (30.7)

^{*}For some outcome parameters less than 24 patients were evaluable. CL, total clearance; CV%, coefficient of variation in percentage; h, hours; MR-AUC₂₄, molar ratio of AMROL to AMR based on AUC₂₄; NA, not applicable; Rac(C_{max}), accumulation ratio based on C_{max} ; Rac(AUC₂₄), accumulation ratio based on AUC₂₄; V_{ss} , volume of distribution at steady state.

Figure 2. Exposure to AMR and AMROL in whole blood, plasma, and **RBCs on day 3**

Figure 3. Urinary excretion of AMR and AMROL Day 3 Day 1 8 12 16 20 24 8 12 16 20 24 Time (hours) Time (hours) - AMROL

Bars indicate standard deviation (SD).

	AMR (N = 24)		AMROL (N = 24)	
	Day 1	Day 3	Day 1	Day 3
Mean Ae ₂₄ , µg (CV%)	909 (30.3)	971 (32.6)	3,274 (29.9)	5,351 (30.8)
Mean %fe ₂₄ , % dose (CV%)	1.27 (31.7)	1.37 (38.2)	4.56 (27.3)	7.45 (28.1)
Mean CL _r , min/mL (CV%)	8.38 (44.2)	8.18 (44.9)	154 (42.0)	154 (46.0)

Ae₂₄, total amount excreted in urine over 24 hours; %fe₂₄, percentage of administered dose excreted in urine over 24 hours; CL_r, renal clearance.

Pharmacodynamics

- The upper one-sided 95% confidence interval (CI) for $\Delta\Delta$ QTcF was below 10 ms at 20 of 21 time points, and was marginally above 10 ms at a single time point (day 1, 10 hours) (Figure 4)
- The upper one-sided 95% CI for QT corrected by individual equation ($\Delta\Delta$ QTcI) was below 10 ms at all time points (Figure 4)
- Holter ECG (days 1 and 3): None of the patients exceeded the clinically relevant thresholds of 480 ms for absolute QTcF and 60 ms for QTcF increase from baseline (Table 3)
- Absolute QTcF 451–480 ms or QTcF increase of 31–60 ms was only observed in 2–3 patients
- Frequency of abnormal intervals was comparable between off-drug and treatment
- 12-lead safety ECG (days 1 to 9): No patient had an absolute QTcF value \geq 450 ms; only 1 patient had a QTcF increase of > 30 ms

Bars indicate upper 95% CI.

Table 3. Number of patients with abnormal QTcF intervals (Holter ECG; days 1 and 3, hours 0–10)

QTcF, n (%)	Off-drug	Day 1	Day 3	Day 1 + 3
Maximum interval				
≤ 450 ms	22 (91.7)	21 (87.5)	22 (91.7)	21 (87.5)
$>$ 450 to \leq 480 ms	2 (8.3)	3 (12.5)	2 (8.3)	3 (12.5)
$>$ 480 to \leq 500 ms	0	0	0	0
> 500 ms	0	0	0	0
Maximum increase from baseline				
≤ 30 ms	21 (91.3)	21 (91.3)	23 (100)	22 (91.3)
$>$ 30 to \leq 60 ms	2 (8.7)	2 (8.7)	0	2 (8.7)
> 60 ms	0	0	0	0

Pharmacokinetic-pharmacodynamic relationship

- No apparent relationship was observed between whole blood concentrations of AMR or AMROL and QTcF changes (Figure 7 and Figure 8)
- There was no clear pattern indicating a delayed QTc effect relative to the change in AMR or AMROL concentrations (Figure 6)

Safety

- The most common grade 3 or 4 AEs were neutropenia, leukopenia, and thrombocytopenia (Table 4
- Febrile neutropenia occurred in 4 patients

Table 4. Treatment-emergent grade 3 or 4 AEs* (N = 24)				
Grade 3 or 4 AE	n (%)			
Neutropenia	11 (46.0)			
Leukopenia	9 (38.0)			
Thrombocytopenia	9 (38.0)			
Anemia	6 (25.0)			
Fatigue	5 (21.0)			
Lymphopenia	4 (17.0)			
Febrile neutropenia	4 (17.0)			
Hypokalemia	2 (8.0)			
Dyspnea	2 (8.0)			
Dehydration	1 (4.0)			
Hypophosphatemia	1 (4.0)			
Hyponatremia	1 (4.0)			
Cough	1 (4.0)			
Hypoxia	1 (4.0)			
Hemoptysis	1 (4.0)			

*AEs were graded according to the National Cancer Institute Common Terminology Criteria for AEs Version 3.0.

CONCLUSIONS

- Full PK profiles of AMR and its active metabolite AMROL were defined for non-Japanese patients with advanced solid tumors
- Whole-blood exposure to AMROL averaged 67% of AMR, based on the AUC₂₄ after 3 consecutive doses
- Amrubicin given as a 5-minute intravenous infusion at 40 mg/m² for 3 consecutive days did not cause a clinically significant prolongation of the QTc interval in patients with advanced solid tumors
- The safety profile of AMR is consistent with findings from phase 2 and 3 studies of AMR in patients with SCLC

References

- 1. Hanada M, et al. Jpn J Cancer Res. 1998;89:1229-38.
- 2. Ettinger DS, et al. J Clin Oncol. 2010;28:2598-603
- 3. Jotte R. et al. J Clin Oncol. 2011:29:287-93.
- 4. Inoue K, et al. Invest New Drugs. 1989;7:213-8
- 5. Matsunaga Y, et al. Ther Drug Monit. 2006;28:76-82.
- 6. Suzuki T. et al. Invest New Drugs. 1997;15:219-25.
- 7. Noda T, et al. Invest New Drugs. 1998;16:121-8.

Acknowledgments

The authors received editorial and printing support from Excerpta Medica funded by Celgene Corporation. The authors would like to thank Amy Kellerman for managing the study.

Disclosures

Chen, Yung, McNally, and Renschler: Celgene Corporation – Employment, Equity Ownership. Chawla, Chiorean, Read, and Sharma: Celgene Corporation – Research Funding. Gorbaty and Mita: nothing to disclose.